Stal jest jednym z kluczowych materiałów w produkcji komponentów dla morskiej energetyki wiatrowej. Naukowcy badają obecnie beton jako alternatywę w fundamentach i wieżach turbin wiatrowych. Koncepcja jest prosta, ale wiąże się z kilkoma wyzwaniami.
Betonowe fundamenty nie są najnowszą koncepcją w sektorze morskiej energetyki wiatrowej. Materiał ten jest stosowany w fundamentach grawitacyjnych (gravity based structure – GBS), które są już wdrażane na rynku globalnym. Naukowcy przekonują, że zastosowanie betonowych konstrukcji nośnych dla morskich turbin wiatrowych oferuje wiele potencjalnych korzyści w porównaniu do wież wykonanych wyłącznie ze stali, w tym większą trwałość, dłuższą żywotność, zwiększone możliwości pracy i znacznie cichsze prowadzenie działań pod wodą. Kluczem jest zbadanie wytrzymałości zmęczeniowej betonu zanurzonego przez wiele lat w morskiej wodzie, podatnego na dużą liczbę naprężeń. Być może koniecznie będzie wzmocnienie betonowych fundamentów dodatkowym wstawkami – ze stali. Jednak i te rozwiązanie spowoduje znaczenie ograniczenie zależności branży od tego surowca, które drożeje na skutek wysokich cen energii elektrycznej.
Rozwiązanie badają naukowcy z amerykańskich uczelni Tufts University i University of Illinois. Dotychczas z badań wynika, że zastosowanie stalowych prętów wewnątrz betonu znacznie zwiększa zdolność zmęczeniową, a tym samym żywotność operacyjną fundamentu i wieży w porównaniu z konstrukcjami tylko betonowymi. Stal jest również chroniona przed korozją, gdy jest „zamknięta” w betonie.
Większe naprężenia takie jak huragany, charakterystyczne dla obszaru USA, we wczesnym okresie eksploatacji konstrukcji uszkadzają ją trwale w sposób, który sprawia, że późniejsze naprężenia o niższym poziomie (tj. obciążenia eksploatacyjne) są bardziej dotkliwe niż byłyby w przeciwnym razie – wskazują amerykańscy naukowcy.
W ramach tego badania, naukowcy skompilowali bazę danych pochodzących z ponad 2500 testów wytrzymałości zmęczeniowej betonu, realizowanych w ramach kilkudziesięciu badań.
Istnieją obawy zastosowania betonu w morskiej energetyce wiatrowej pod względem zrównoważonego rozwoju.
Beton wymaga cementu, które produkcja jest odpowiedzialna za około 8 proc. globalnych emisji dwutlenku węgla.
Jak czytamy na stronie amerykańskiego departamentu energetyki (DOE), średnia wartość emisji CO2e w produkcji cementu stosowanego w fundamentach lądowych i morskich turbin wiatrowych wynosi około 1 gram w przeliczeniu na kilowatogodzinę produkcji energii elektrycznej. Stanowi to około 10 proc. emisji w sektorze lądowej i morskiej energetyki wiatrowej - odpowiednio około 11 g/kWh i 12 g/kWh. Z kolei emisja z produkcji energii elektrycznej z gazu ziemnego wynosi średnio 490 g/kWh, a z węgla 820 g/kWh. Oznacza to, że w dalszym ciągu zastosowanie cementu w fundamentach wiatrowych będzie korzystne niż użytkowanie elektrowni węglowych i gazowych. W celu rozwiania tych obaw, zespół badawczy analizuje też wydajność zmęczeniową betonów niskoemisyjnych produkowanych przy użyciu alternatywnych substytutów cementu.
Dodatkowym wyzwaniem dla fundamentów betonowych jest dłuższy czas produkcji w porównaniu do konstrukcji stalowych. Problem ten można rozwiązać poprzez prefabrykację fundamentów betonowych.
Energetyka, OZE
Gospodarka odpadami, Recykling
Ekologia, Ochrona środowiska
E-transport, E-logistyka, E-mobilność
EkoDom, EkoBudownictwo
EkoRolnictwo, BioŻywność
Prawo, Administracja, Konsulting
Czy Polska zawalczy o miliardy na transformację?
Trwa konkurs dla mediów „Platynowe Megawaty” 2023. Weź udział i dołącz do grona laureatów
40 mld zł z KPO dla samorządów w ramach „Pożyczki wspierającej zieloną transformację miast”
Portugalia: rekordowy udział energii słonecznej w zużywanym w kraju prądzie
W Gliwicach głoszono przetarg na farmę solarną i magazyn ciepła
Qemetica Glass zainwestuje 70 mln zł w ekologię
Ropa brent | $ | baryłka | ||
Cyna | $ | tona | ||
Cynk | $ | tona | ||
Aluminium | $ | tona | ||
Pallad | $ | uncja | ||
Platyna | $ | uncja | ||
Srebro | $ | uncja | ||
Złoto | $ | uncja |